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resonant window dimension together with the resonant frequency
calculated from (l). It can be noted that the results from the two
approaches coincides well with each other with a difference of about
oneto two percent. Since adiscrepancy ofafewpercent are expected
between the result from (1) and that of experiment [6], the results
obtained by the present numerical method can be considered to be

of good accuracy. Equation (1) is an empirical one which considers
only the effect of the dominant mode and it is not likely to give good
results when the operating frequency approaches the cutoff frequency
of the next higher order mode. This phenomenon can also be observed
in Fig. 3. For the curve alla = 0.7 when AIII approaches unity (the
cutoff wavelength of the TE20 mode) the difference between the two
curves becomes bigger. Here again, only twoorthree basis functions
are included in the computation.

In the course of the numerical calculation the most time consuming
procedure is the matrix inversion. The size of the matrix to be inverted
is determinedly the number of theused basis function. Two or three

basis functions imply that the matrix to be inverted is of the order 2 x 2
or 3 x 3. The numerical analysis with the suggested basis functions
is consequently very computationally time saving. The typical CPU
time required for one point calculation with as much as 1600 total
waveguide modes is about 20 seconds on a CONVEX computer.

IV. CONCLUSION

A new class of simple-form basis functions are presented for

solving waveguide iris coupling problem by using the moment

method. A study for different coupling structures using these basis
functions shows good agreement with the already published re-
sults. Compared with the basis functions published before the basis
functions introduced here are characterised by their simple forms,
generality and fast convergence which are consequently suitable for
analysing relatively complex coupling structures.
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Numerical Electromagnetic Inverse-Scattering
Solutions for Two-Dimensional Infinite Dielectric

Cylinders Buried in a Lossy Half-Space

S. Caorsi, G. L. Gragnani, and M. Pastorino

Abstract—An approach to microwave imaging in a half-space geometry
and for infinite dielectric cytinders buried in a Iossy medium is proposed.
The two-dimensional integral-equation for the inverse-scattering problem
is discretized by the moment method. The resulting ill-conditioned system
is solved by pseudoinversion. A multi-incidence process based on the
invariance of the Green matrix to the incident field is described. Results of
some numerical simulations, assuming a noisy environments, are reported
and discussed.

I. INTRODUCTION

In this paper, a two-dimensional integral formulation of inverse

scattering in a half-space is proposed for microwave imaging of

buried objects. This technique is of great interest in many geophysical

and civil-engineering fields. Detection of cables and pipes (plastic

materials) is a significant example. In the past, some works dealt with

the problem of identifying nonmetallic structures by radar [1], [2], and

an interesting method for microwave imaging of buried objects was

proposed in [3]. Moreover, a diffraction tomography methodology

previously developed for medical applications, was proposed for

electromagnetic imaging of buried cylindrical inhomogeneities [4].

In the present paper, the theory of inverse scattering is applied to

solve the integral equation, whose unknown terms are the products

of the object functions by the total electric field. After considering

an eqmvalent current density to model the investigation domain, the

resulting integral equations are solved numerically by the moment

method (MoM) [5].

In the last few years, several moment-method-based inverse-

scattering solutions for many different situations have been pre-

sented. Ghodgaonkar et al. [6] developed a method for imaging
3-D biological targets; Ney et al. [7] used the pseudoinversion
transformation to retrieve the polarization current in mono- and
two-dimensional scatterers. Moreover, two works by Guo and Guo
[8], [9] furnished a theoretical background to develop reconstruction
algorithms. Finally, the authors of the present paper proposed an
approach to the reconstruction of unknown dielectric scatterers in free
space [10]. In this work, the possibility of determining the dielectric
properties of unknown objects buried in a half-space is explored.
Input data are obtained by measuring the values of the scattered
electric field inside an observation domain located near the boundary
between the different media. A TM-wave incident electric field is
used to illuminate the unknown objects. A multi-illumination-angle
imaging process is proposed. Since the Green matrix is invariant
to the incident electric field vector, this multi-illumination process
does not require an increase in computational resources. Another
interesting feature lies in the possibility of computing off line (and
once for all) the pseudoinverse matrix, after fixing the investigation
and observation domains.
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II. MATHEMATICALMODEL

Let us consider the cylindrical geometry presented in Fig. 1. S is

a fixed investigation area on a plane orthogonal to the cylinder axis
(i.e., parallel to the z axis) and buried in region 2. It contains, at
an unknown position, the cross section of a cylindrical object whose
shape and complex dielectric permittivity are unknown. The dielectric
properties of the scatterer may vary with the transverse coordinates
only. The media of regions 1 and 2 are characterized by the complex
dielectric permittivities CT = Co[e,l – j(ueo )–lal] and c; =
CO IC,Z – j(~co)–l U2].The magnetic permeability is PO everywhere.
The unknown complex dielectric permittivity inside the area S can
be expressed as c$(z, y) = CO IG.S(Z, y) – j(uco)-las(.x, y)] for
(.z, y) c S, Let us assume a set of TM-wave incident electric field

vectors in region 1, i.e., 13~nC(z,y) = !U~,,C(Z,y)z, i = 1,...,1. Due
to reflection and transmission by and through the boundary plane, the
following Helmholtz equations hold for that region:

[v? + M’][’1%.(lh Y) + T:ef (z, Y)

+ V::.,, (X>y)] = o y>o, i=l,. ... I (1)

where: ll~ef (z, y ) = V~,f (%, y)z (electric field vectors reflected

by the boundary plane), E&tt (z, y) = V&tit (T, y )z (electric

field vectors scattered by the inhomogeneities in region S), ad
k~2 = UVOCT.Inside the lower medium, equivalent current densities,

.&(z, y) = l(~q(z, y)z, i = 1,. ~., 1, are used to model region ,5.

So, for region 2, the following Helmholtz equations hold

[v? + k; ’][’%ns(r, Y) + V::.,, (%Y)]

= jLdpo K:q(.r!, y) y<o.i=l,....~ (2)

where: E&, (a, y) = Wjran,(z, y)z (electric field vectors trans-
mitted through the boundary plane), E~&t (z, y ) = V&tt (r, y) z

(electric field vectors scattered by the inhomogeneities in region S),
and k~z = WpOe;. The equivalent current densities are related to the

dielectric properties of region S via the following relation:

A&(.z,y) =j(u~o)-l[k:z(z,y) – k;’]

“ [%arls(z$ Y) + @:att(% Y)]

= 0(.r, y)[v:ran. (z, y)

+ ‘&.tt(.G Y)](JL Y) ~ s (3)

In this relation, the term k~2(T, y) = wpo~j(z, y) and o(.r, y),
independent of the index i, is called the object function (or scattering
potential). The measured scattered electric fields can be espressed in
;ntegral form [11]:

I
A-:q(z’, y’) ry(z, y,z’, y’) d$’ dg’

s

= E&att(z, y) y>o, i=l,. ... I

where the Green function for the half-space geometry
written as

r?(~,y,~’,y’)

1 J
—cc~—_— — exp{–j~[z – z’]}

27r _m 71 +72

(4)

11] can be

~ew{wy – 72 Y’}dA (5)

where T1 = (A2–k~2)l/2 and 72 = (A2–k~2)l/2, with Im{~l} <10
and Im{ 72 } < 0. Relation (4) is an integral equation with the
unknown K“,q(z’, y’ ). Assuming to measure the total electric fiell(d
(and to derive the scattered electric field) at M testing points in
region 1, we can apply the MoM to (4) (assuming piecewise basis
functions) [5]:

= V1’ (scatt ‘m * Ym ) m,z l,... ,N i=l,..., I (6)

where the values K: are the coefficients of the series expansions

X)=1 ~~”;u(z,v), with u(z, y) = 1, if (.z, y) E s~, andu(x, y) = O,

otherwise. The kernel of (4) is invariant to the incident field (i.e., it

is independent of i), and this property is kept in the systems c~f

equations (6), which can be written in matrix form as

Ir211~’ = ~~;a,, i=l.... ,1 cl)

where the arrays K and &.tt aregivenb & = [K;,~G,... 1
Ii’~]Tand V_&t = [v;:at, (z,. y,), v:;att(22, y2),. ,’v&(xAf,

UAJ)] T, i = 1.”””,1. AS a consequence, the matrix elements t)f
[r21] can be calculated only once, and the arrays E, i = 1.. ~1, ~’,

can be obtained by applying a pseudoinversion algorithm, as it has
previously been done for imaging in free space [7], [10] to overcome

the ill-conditioning. We obtain:

K’ = lr211+~&fit i=l, . . ..~ (8)

where [rzl]+ is the pseudoinverse matrix of [1’21]. It can be derived

off line and once for all (independently of the number of incident
electric fields used). By means of the reconstructed equivalent current
densities, we can obtain the dielectric properties by using relation (3),
where the values of V&tt are computed, in an approximate way, in

terms of the coefficient K: in (9) at the bottom of this page, where

C?b,y, ~’$Y’)

/

—Cc .

exP{–j72(y+y’)}d~+& _m &
.exp{–jA[z – r’]} exp{–~~aly + v’1} d~ (lo)

where -y] = (A2 – k~2)l/2 and 72 = (A2 – k~’)11’, with

Im{-yl } <0 and Im{V2 } <0. It should be noted that the coefficients

{J ~Sn ~?2 (z, Y, z’, Y’) dx’ du’} can be evaluated off line and once
for all, too, and stored in a computer memory. If we assume constant

dielectric parameters inside each subdomain S., n = 1,. ... N, from

relations (9) and (3) we obtain (11) at the bottom of the next pag,e,

where ( rn, Y.) indicates the center of the subdomain S., whose

constant dielectric permittivity is e?.

(9)
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Investigation area

Fig. 1. Problem geomehy.

III. NUMERICALSIMULATIONSAND DISCUSSION

Let us consider the geometrical configuration shown in Fig. 2. The
investigation area was assumed to be of square shape and to measure
A&/3 x Av%13, where J was the wavelength in region 1. The area

was partitioned into 25 A/3& x J/3&-sided subareas, and the
distance between the upper side of this domain and the boundary

plane was assumed to be equal to A/6v%. Twenty-five equally-

spaced (~/ 10 W) measurement points were arranged on a line placed

in region 1 at a distance A/6 V% (Fig. 2). A square homogeneous
scattering object was assumed to occupy a whole subarea. For the first
simulations, the dielectric parameters of the object were e, = 10.0
and a = 0.0, and we assumed e,l = 1.0 and aI = 0.0 for region

1 and C,Z = 5.0 and U2 = 0.0 for region 2. A transmitted wave

obtained through the normal incidence (01 = 8Z = O) of a uniform

unit plane wave upon region 1 illuminated the scatterer. The scattered

electric field at each measurement point was calculated by solving the
EFIE, following a procedure analogous to the one used by Richmond
[12] for TM scattering in free space.

In the first set of simulations, we performed dielectric recon-
structions for different positions of the scattering object inside the
investigation domain. Fig. 3 gives the histograms of the percentage
errors on the reconstructions of the equivalent-current-density ampli-
tudes and of the relative dielectric permittivities at some significant
locations inside the subarea containing the scatterer (refer to the cell
numbering in Fig. 2). As can be seen, a very good reconstruction was
achieved when the scatterer was assumed to occupy cell 1, i.e., to be
very close to the boundary plane (about J/10). When the scatterer’s
depth increased, the errors also increased (by about 20–30 percent
for a distance from the boundary plane ranging between J/2& and

Incident plane wave
Reflected wave

Iy W.rementpoints

I ““”””””””ki~””””””””Redonl

Fig. 2.
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Geometrical configuration adopted for the numerical simulations.
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Fig. 3. Percentage errors on the dielectric reconstructions (scatterer:

~~ = 10. O and c7z = 0.0: region 2 crz = 5.0 and uz = 0.0; number
of incidence: 1 = 1,01 = 0.0 (rad); SII’J= cm).

3A12W). They increased by about 45 percent for cell 22 (distance
equal to 3A/2 W). As can be seen from Fig. 3, the results of these
noiseless simulations show that the reconstruction of the scatterer’s

dielectric permittivity is almost equivalent for cells 8, 13, 17, while

the background appears noisier as the scatterer’s depth increases.
In a second set of simulations, we considered an idealized lossy

dielectric scatterer (c, = 1.0 and a = 10.0) of the same dimensions

as those of the previous lossless scatterer. The results of the recon-
struction of the electric conductivity are presented in Fig. 4. The plot

(11)



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 41, N0.2, FEBRUARY 1993 3:,5

m-

9.).1

40.

xl.

20

10.

0.

\onrmsmJtid - Ono”g!nq
n = 1,8,13,17,22

rsn.w.~

n
1 8 13 17 22

cell number

FIg.4. Percentage emorson thereconstmction of theelectfic conductlvityof
th~scatterering object (scatterer:cr = l. Oanda= 10.0; reglon2:e,2 =-5.0
andoz = 0.0; number ofincidences: I = 1,01 = 0.0 (rad); S/N= M).

]llo=”-’+-I&”4l n=1,8,131722
Ifiwrn.l ,!

,max K==-*””I
lI+MI i * n

&nc’@.d

r

I
I

1 8 13 17 22
cell number

Fig. 5. Percentage errors on the dielectric reconstructions (scatterec

G- = 10.0 and u = 0.0: region 2: t,z = 5.0 and az = 02: number of
incidence: I = 1,01 = 0.0 (rad): S/N = w).

shows a certain increase in the reconstruction error as the scatterer’s

depth increases; for instance, the error increases by about 35 percent

for cell 22. By contrast, it is very small for cell 1.

Then, the same scattering object as considered in the first simu-

lations (t, = 10.0 and a = 0.0) was placed in a lossy medium

(region 2) characterized by 6,2 = 5.0 and uz = 0.2. Fig. 5 gives

the results of the dielectric reconstructions. One can notice that both

the equivalent current density and the dielectric permittivity of the

object were reconstructed quite weIl (as in the case of the Iossless
medium). while the background cells were reconstructed far better

than shown in Fig. 4. This is to be ascribed to the fact that, in

these noiseless simulations, attenuations due to losses in region 2

did not significantly affect the input data from a comptr~ational point

of view. On the contrary, a different incident-field value (both in
amplitude+ue to losses—and in phase) for each cell allows us to

obtain more informative scattering data at the measurement points.

It will be shown that this improvement does not occur in the case

of noisy input data.

To evaluate noise effects, a random array made up of two indepen-

dent sequences of Gaussian noise (zero mean) was added to the same
input data, in order to obtain different values of the signal-to-noise

60.

40.

al.

rr..
0. 10. 20. 3. 40. 9). m. 70. 80.

SIN

Percentage errors on the dielectric reconstruction of a scattering
object contained in the 8th cell (scattere~ ●, = 10.0 and a = O.0: region
2: erz = 5.0 ad C72= 0.2; number of incidence: I = 1,61 = 0.0 (rad);
S/N = 10, 20, 40, 60, 80 dB.

ratio, S/N. This ratio can be defined as:

where ~ indicates the random array. As an example, Fig. 6 shows
the reconstruction errors versus different values of the signal-to-
noise ratio (10–80 dB) for cell 8. We assumed the same scatterer
(c. = 10.0 and rJ = 0.0) and the same lossy medium (cr, = fi.O and

az = O.2). The data on the equivalent current density are affected
by percentage errors greater than 40 percent, for S/N < 60 dB.
Nevertheless, the reconstruction of the dielectric permittivity can be
considered acceptable (percentage errors smaller than 50 percent).
Instead, notable errors affect the data on the background cells for the

lowest values of the S/N ratio.
A certain improvement was obtained through a multi-incidence

process. Since the Green matrix is independent of the incident electric

field, one can use more than one illumination, and then average the
obtained values, without significantly increasing the computational
load (as the pseudoinverse matrix is computed off line and once

for all). We considered 5 incident uniform plane waves, propagating
with angles .91 = 0,0.25,0 .5,0.75.1 (rad). The scatterer (c, = 10.0
and o = O.O) was located in the 17th cell, and the propagation
medium was characterized by c,2 = 5.0 and a~ = 0.2. Fig. 7
gives the values of the reconstructed dielectric permittivity of the

scattering object in the whole investigation domain (for SIN = 20
dB): the plot (a) refers to the single-incidence process, and the plot
(b) refers to the 5-incidence process. Only a slight improvement
in the reconstruction of the dielectric permittivity of the scatterer
was obtained in this case (about 6.6 for 5 incidence vs. 6.2 for
1 incidence). However, in general, no advantages of the mullti-
incidence process can be noticed in the results of the scatterer
reconstruction. Nevertheless, this technique allows one to obtain more
regular background reconstructions. These results are better pointed

out in Table I, which gives the mean errors on the reconstructions
of the dielectric permittivities inside the empty cells, together with
the largest error, which is related to the worst-reconstructed cell, for
S/N ranging between 20 and 80 dB. It should be noted that a further
improvement might result from considering at least the symmetrical
incidence angles (01 = –0.25, –0.5. –0.75, –1.0 (rad)). Finally,
Table II gives, for completeness, the partial results of each singlle-

incidence solution, obtained for each illumination angle (01 =
0.0,0 .25.0.5,0.75,1.0 (rad)) and for the same values of the SIN
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TABLE I
VALUESOFTHE RECONSTRUCTEDRELATIVEDIELECTRICPERMITTIVITYFOR I = 1.61 = O 0 (rad) AND I = 5,$1 = 0,0,0 .25,0.5,0.75,1.0

(rad). SCATTERER:6, = 10.0 AND o = 0.0; REGION 2: .srz = 5.0 AND 02 = O 2; Slhr = 20.40, 60.80 dB

●

Signal-to-noise ratio Number of m% [e,=(k) - &f*(k) I 1+’~N le~=(k) - ~[*(k) I
incidence k

S/N=60dB P=l 0.7 0.2
P=5 0.5 0.12

S/N =60 dB P=l 1.2 0.21
P=5 0.4 0.11

S/N =40 dB P=l 1.2 0.25
P=5 0.7 0.13

S/N =20 dB P=l 0.5 0.16
P=5 0.6 0.11

TABLE II
VALUESOFTHERECONSTRUCTEDRELATJVEDIELECTRICPERMITTIVITYFOR
1 = 1.01 = 0.0.01 = 0,25,61 = 0.5.01 = 0.75,01 = 10 (PARTIAL

RESULTSOF EACH SINGLE-INCIDENCEPROCESS).SCATTERER:.s,. = 10.0 AND
0 = 0.0; REGION2: G.2 = 5.0 AND aj = 0.2: S/N = 20, 40.60, 80 dB

I S/N = S0dB I S/N . Q dB I S/N =40 dB I S/N .20 dB
0.2s6 o 28s 0140 0 Zal

.,CZ” I I I I
25 rad 0,278 0287 0350 0376

K,.,+ I 0.291 I 0291 I 0271 I 0275

w’
u
$
u
?
+
0)
c
o
u
aJ
L_

Fig. 7.

13.oL, _ 1 1 1 1
9.075 (ad 0.285 0285 0314 02%

e=lnr.~ I 0290 I 0302 I o 3(X3 I 0.410

(a) --—--
(b)

2.0
t. 2. 34.5.6.7.8 9.10.iif213. 14.15.l&17.l&19.~.2t.22.2324.25

cell number—

Reconstructed relative dielectric permittivity m the investigation do-
m~in. Number of incidence: (continuous line) I = 1.91 = O.0 (rad): (dashed
hne) 1 = 5,61 = 0,0,0 .25,0.5.0.75.1.0 (rad). (scatterec CT = 100 and
u = 0.0: region 2: Crz = 5,0 and Uz = 0.2; S/N = 20 dB).

ratio. As expected, the reconstruction quality is entirely independent

of the illumination angle, due to the infinite wavefront of the incident

plane wave used as an interrogating wave.

IV. CONCLUSIONS

An approach to microwave imaging of two-dimensional infinite
dielectric cylinders buried in a half-space configuration has been
proposed. The approach is based on an integral formulation of
em. scattering in terms of the Green function for two half-space
(seminfinite) homogeneous dielectric media interfaced by a plane.
The MoM and a pseudoinversion algorithm are used in the numerical
scheme. A multi-incidence process makes it possible to obtain a

reduction in the reconstructed background noise, with no increase

in the required computational resources, thanks to the invariance of

the Green matrix to the incidence angle.

Numerical results show that dielectric reconstructions are feasible,

even though errors are to be expected, especially for lower values of
the signal-to-noise ratio and for deeper objects.
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Calculating Input Impedance of Electrically Small
Insulated Antennas for Microwave Hyperthermia

Piotr S. Debicki and Melvin A. Astrahan

Abstract— ‘IWO analytical methods for approximating the input
impedance of insulated monopole or dipole antennas embedded within
an electrically dense medlnm have been reported in the literature. The
methods differ by the applied degree of approximation in the solution
of the integral equation for the current in the insulated conductor.
These methods directly affect the calculation of the wavenumber and
the characteristic impedance of an antenna treated as a lossy coaxial
line. In the more complex approach the resulting formulas contain
an additional term which improves the correlation with measured and
numerically modeled results for electrically longer antennas. When
applied to electrically small antennas (Le. < 1/8 wavelength in the
medkrm), thk term introduces a significant error into the calculation of
the real part of the complex input impedance. Special care must he taken
if these formulas are used to design multisectional antennas in order to
avoid impedance mismatch. ‘ho methods for correcting thk error are
presented.
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I. INTRODUCTION

Insulated dipole and monopole antennas embedded in a dissipative

dielectric medium may be found in many technical areas including

communications, physical measurements, geophysical exploration

and localized heating. An important medical application of localized

heating is hyperthermic therapy of cancer and certain benign diseases

[2]-[5], [9] where insulated antennas are often used as interstitial and
intracavitary hyperthermia applicators.

Two analytical approximations which describe the current distri-
bution and input impedance of these antennas have been developed
by King et al. [6]–[8]. We will refer to these approximations as the
insulated antenna theory (IAT). According to the IAT, the insulated

antenna embedded in a 10SSYdielectric is treated as a 10SSYtransmis-

sion line terminated with an ideal open end which assumes infinite
terminating impedance. The transmission parameters of the line are

derived from approximate solutions of the integral equation for the
current along the antenna.

The methods differ bya the applied degree of approximation in
the solution of the integral equation for the current in the insulated
conductor and also differ slightly in assumptions. These results
directly affect calculation of the wavenumber of the current and
the characteristic impedance of an antenna treated as a lossy coaxial
line. The simpler approximation [7], although appropriate for elec-

trically smaller antennas (h < 1/4 wavelength in the surrounding
medium-~~ ) leads to significant error as h becomes longer. The
more complex (MC) approach [7] contains an addhional term which

improves the correlation with measured and numerically modeled
results for electrically longer antennas. When applied to electrically
small antennas (i.e. < 1/8AM), this addhional term introduces a
significant error into the calculation of the real part of the complex
input impedance.

Iskrmder and Tumeh [3] have proposed an iterative approach

to designing multisectional antennas based on the MC method of
approximating the current distribution. If their approach is used
to develop devices (such as hyperthermia applicators) containing
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Fig. 1. Insulated antenna embedded in an electrically dense medium. Uni-
form monopole (at top). Sectorial antenna in the form used in Table I (at
bottom).

multi sectional antennas speciaf care must be taken to avoid impedance
matching error.

II. METHODS

The IAT was used to compare the two approximation methods for
electrically small antennas. Consider the case of a monopole antenna
with lossless insulation and time dependence e~Wt. The insulated

monopole (Fig. 1(a) consists of a perfect central conductor of length
h and outer diameter (OD) 2a. This is surrounded by an insulating

layer with OD = 2c. The monopole is assumed to be ideally open

ended. The insulation may consist of one or two layers. However,
for simplicity, only a single layer will be considered. Outside the
insulation there is an infinite ambient medium. The wavenumber ~crf
the insulating layer is Icz = w(~LO eZ ) 1/2 and the wavenumber of the
ambient medium is kq = /34 – jcxq = w(po F4 )1/2.

The assumptions of the IAT are that the cross section of the antenna
is electrically small ( (Iw C)2 << 1) and that the electric density (Ik, I)
of the ambient medium is higher than that of the insulation. In the
MC case Ik4 /k2 [2 >2 and in the less complex (LC) approximation
lk4/kz12 ~ 16.

The input impedance of the monopole antenna can be calculated
from the complex wavenumber (k~ ) and the complex characteristic
impedance ZC of the line:

Z,. = –.jZc/ tan(k~ k) (1)

In the case of LC approximation of the current distribution:

kL = kz[l + F/ ln(c/a)]l/2 (2)

Zc = k~ ln(c/rz)/(2xwez) (3)

where F = H$2)(kqc)/[kq c@2) (kAc)]. The MC approach yields:

kL = k2[l + F/ ln(c/a)]’i2[l + (F(k2/k4)2/ ln(c/a))]-1’2 (4)

Z. = kL ln(c/a)/(2nwcz) + k~F’(kz/kq )2/(2 rrw~2) (5)
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