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resonant window dimension together with the resonant frequency
calculated from (1). It can be noted that the results from the two
approaches coincides well with each other with a difference of about
one to two percent. Since a discrepancy of a few percent are expected
between the result from (1) and that of experiment [6], the results
obtained by the present numerical method can be considered to be
of good accuracy. Equation (1) is an empirical one which considers
only the effect of the dominant mode and it is not likely to give good
results when the operating frequency approaches the cutoff frequency
of the next higher order mode. This phenomenon can also be observed
in Fig. 3. For the curve a; /a = 0.7 when A/« approaches unity (the
cutoff wavelength of the TEyp mode) the difference between the two
curves becomes bigger. Here again, only two or three basis functions
are included in the computation.

In the course of the numerical calculation the most time consuming
procedure is the matrix inversion. The size of the matrix to be inverted
is determined by the number of the used basis function. Two or three
basis functions imply that the matrix to be inverted is of the order 2x 2
or 3 X 3. The numerical analysis with the suggested basis functions
is consequently very computationally time saving. The typical CPU
time required for one point calculation with as much as 1600 total
waveguide modes is about 20 seconds on a CONVEX computer.

IV. CONCLUSION

A new class of simple-form basis functions are presented for
solving waveguide iris coupling problem by using the moment
method. A study for different coupling structures using these basis
functions shows good agreement with the already published re-
sults. Compared with the basis functions published before the basis
functions introduced here are characterised by their simple forms,
generality and fast convergence which are consequently suitable for
analysing relatively complex coupling structures.
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Numerical Electromagnetic Inverse-Scattering
Solutions for Two-Dimensional Infinite Dielectric
Cylinders Buried in a Lossy Half-Space

S. Caorsi, G. L. Gragnani, and M. Pastorino

Abstract—An approach to microwave imaging in a half-space geometry
and for infinite dielectric cylinders buried in a lossy medium is proposed.
The two-dimensional integral-equation for the inverse-scattering problem
is discretized by the moment method. The resulting ill-conditioned system
is solved by pseudoinversion. A multi-incidence process based on the
invariance of the Green matrix to the incident field is described. Results of
some numerical simulations, assuming a noisy environments, are reported
and discussed.

I. INTRODUCTION

In this paper, a two-dimensional integral formulation of inverse
scattering in a half-space is proposed for microwave imaging of
buried objects. This technique is of great interest in many geophysical
and civil-engineering fields. Detection of cables and pipes (plastic
materials) is a significant example. In the past, some works dealt with
the problem of identifying nonmetallic structures by radar [1], [2], and
an interesting method for microwave imaging of buried objects was
proposed in [3]. Moreover, a diffraction tomography methodology
previously developed for medical applications, was proposed for
electromagnetic imaging of buried cylindrical inhomogeneities [4].

In the present paper, the theory of inverse scattering is applied to
solve the integral equation, whose unknown terms are the products
of the object functions by the total electric field. After considering
an equivalent current density to model the investigation domain, the
resulting integral equations are solved numerically by the moment
method (MoM) [5].

In the last few years, several moment-method-based inverse-
scattering solutions for many different situations have been pre-
sented. Ghodgaonkar et al. [6] developed a method for imaging
3-D biological targets; Ney et al. [7] used the pseudoinversion
transformation to retrieve the polarization current in mono- and
two-dimensional scatterers. Moreover, two works by Guo and Guo
[8], [9] furnished a theoretical background to develop reconstruction
algorithms. Finally, the authors of the present paper proposed an
approach to the reconstruction of unknown dielectric scatterers in free
space [10]. In this work, the possibility of determining the dielectric
properties of unknown objects buried in a half-space is explored.
Input data are obtained by measuring the values of the scattered
electric field inside an observation domain located near the boundary
between the different media. A TM-wave incident electric field is
used to illuminate the unknown objects. A multi-illumination-angle
imaging process is proposed. Since the Green matrix is invariant
to the incident electric field vector, this multi-illumination process
does not require an increase in computational resources. Another
interesting feature lies in the possibility of computing off line (and
once for all) the pseudoinverse matrix, after fixing the investigation
and observation domains.
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II. MATHEMATICAL MODEL

Let us consider the cylindrical geometry presented in Fig. 1. S is
a fixed investigation area on a plane orthogonal to the cylinder axis
(i.e., parallel to the » axis) and buried in region 2. It contains, at
an unknown position, the cross section of a cylindrical object whose
shape and complex dielectric permittivity are unknown. The dielectric
properties of the scatterer may vary with the transverse coordinates
only. The media of regions 1 and 2 are characterized by the complex
dielectric permittivities €] = eoler1 ~ j(weo) loi] and € =
¢o[€r2 — j(weo) 2], The magnetic permeability is po everywhere.
The unknown complex dielectric permittivity inside the area S can
be expressed as €5(z,y) = eolers(z,y) — j(we) tos(a,y)] for
(z.y) € S. Let us assume a set of TM-wave incident electric field
vectors in region 1, i.e., B! (x,y) = ¥}, (z,y)z,i=1,---,1. Due
to reflection and transmissjon by and through the boundary plane, the
following Helmbholtz equations hold for that region:

[V? + kIQ][\Filnc('I;? y) + \IJ;ef (wﬁ y)
+\Ifééatt(x7y)]:0 y>05i:17"'7I (1)
where: Ei;(z.y) = Tl (x y)z (electric field vectors reflected
by the boundary plane), El%,..(z,v) Uit (2, y)z (electric
field vectors scattered by the inhomogeneities in region S), and
Et? = wpoe]. Inside the lower medium, equivalent current densities,
T2, y) = Kig(z,y)z, i = 1,-+-, 1, are used to model region 5.
So, for region 2, the following Helmholtz equations hold:
[V2 + k22][\1’trans(1‘ y) + ‘Ilscatt(xyy)]

= jupoReg(e,y) ¥y <0.i=1,---,1 )
where: By, (z,y) = Ui (x,y)z (electric field vectors trans-
mitted through the boundary plane), B2, (x,y) = T2, (x,y)z
(electric field vectors scattered by the inhomogeneities in region S),
and k3% = wpges. The equivalent current densities are related to the

dielectric properties of region S via the following relation:

I{;q(l’v y) =j(wu0)_1[k§2(w, y) - k;2]
' [Wérans(wa Zl) + \Ilgcl:att (I, y)]
= 0('1'7 y)[ql;rans(x7 y)

+ V(@ )2 y) €5 3)
In this relation, the term k¥ (r,y) = wpoes(x,y) and o(r,y),
independent of the index ¢, is called the object function (or scattering

potential). The measured scattered electric fields can be espressed in
integral form [11]:

// I{z ,yl) Fil(w’y»x’>y

y>04=1,---,I “

where the Green function for the half-space geometry [11] can be
written as

/) dx' dy'
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where vi = (A2 —ki%)Y? and 2 = (A2~ £32)Y2, withIm{7 } < 0
and Im{y;} < 0. Relation (4) is an integral equation with the
unknown Kq(z',y'). Assuming to measure the total electric field
(and to derive the scattered electric field) at A testing points in
region 1, we can apply the MoM to (4) (assuming piecewise basis
functions) [5]: '

N
ZR,’,// T2 (@ Yoz’ y) da’ dy'
n=1 S

=0l i (emaym) m=1,.. N i= LI (6)
where the values A, are the coefficients of the series expansions
SN Kiu(z, y), with w(z,y) = 1,if (£,y) € Sp,and u(z,y) = 0,
otherwise. The kernel of (4) is invariant to the incident field (i.e., it
is independent of ¢), and this property is kept in the systems of
equations (6), which can be written in matrix form as

[PZI] IX — \Ilh

—=scatt

i=1.-,1 0
and B!’ . are given by K* = [K|,K},---,

Hscatt — [\Iigcatt(ml yl)a \Iliéatt ('rQ’ 92)9 Ut ‘I,;éatt(‘r]\(s
yM)]T,i = 1.---,I. As a consequence, the matrix elements of
[T%'] can be calculated only once, and the arrays A, i = 1.+, 1,
can be obtained by applying a pseudoinversion algorithm, as it has
previously been done for imaging in free space [7], [10] to overcome
the ill-conditioning. We obtain:

where the arrays K*
K4)" and 92

k' = [F21]+£éatt

t=1,---.1 ®)

where [T2!]T is the pseudoinverse matrix of [T'2!]. It can be derived
off line and once for all (independently of the number of incident
electric fields used). By means of the reconstructed equivalent current
densities, we can obtain the dielectric properties by using relation (3),
where the values of 2., are computed, in an approximate way, in
terms of the coefficient K7, in (9) at the bottom of this page, where

! !
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(10)

where v1 = (A2 — k{z)l/2 and 2 = (A — k§2)1/2. with
Im{v1} € 0and Im{~.} < 0. It should be noted that the coefficients
{ffsn T22(z,y,2',9') d2’ dy'} can be evaluated off line and once
for all, too, and stored in a computer memory. If we assume constant
dielectric parameters inside each subdomain S,,n = 1,---, N, from
relations (9) and (3) we obtain (11) at the bottom of the next page,
where (z,,y.) indicates the center of the subdomain S., whose
constant dielectric permittivity is e5”.

ZI& u(z, y)
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TM-wave incident electric fields
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Fig. 1. Problem geometry.

III. NUMERICAL SIMULATIONS AND DISCUSSION

Let us consider the geometrical configuration shown in Fig. 2. The
investigation area was assumed to be of square shape and to measure
Av5/3 x X\v/5/3, where X was the wavelength in region 1. The area
was partitioned into 25 A/3+/5 x \/3+/5-sided subareas, and the
distance between the upper side of this domain and the boundary
plane was assumed to be equal to >\/6\/5_. Twenty-five equally-
spaced (1/10+/5) measurement points were arranged on a line placed
in region 1 at a distance \/6+/5 (Fig. 2). A square homogeneous
scattering object was assumed to occupy a whole subarea. For the first
simulations, the dielectric parameters of the object were ¢, = 10.0
and o = 0.0, and we assumed ¢,; = 1.0 and o1 = 0.0 for region
1 and €2 = 5.0 and o2 = 0.0 for region 2. A transmitted wave
obtained through the normal incidence (¢, = 8> = 0) of a uniform
unit plane wave upon region 1 illuminated the scatterer. The scattered
electric field at each measurement point was calculated by solving the
EFIE, following a procedure analogous to the one used by Richmond
[12] for TM scattering in free space.

In the first set of simulations, we performed dielectric recon-
structions for different positions of the scattering object inside the
investigation domain. Fig. 3 gives the histograms of the percentage
errors on the reconstructions of the equivalent-current-density ampli-
tudes and of the relative dielectric permittivities at some significant
locations inside the subarea containing the scatterer (refer to the cell
numbering in Fig. 2). As can be seen, a very good reconstruction was
achieved when the scatterer was assumed to occupy cell 1, i.e., to be
very close to the boundary plane (about A/10). When the scatterer’s
depth increased, the errors also increased (by about 20-30 percent
for a distance from the boundary plane ranging between \/2+/3 and
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Fig. 2. Geometrical configuration adopted for the numerical simulations.
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3X/2+/5). They increased by about 45 percent for cell 22 (distance
equal to 31/2+/5). As can be seen from Fig. 3, the results of these
noiseless simulations show that the reconstruction of the scatterer’s
dielectric permittivity is almost equivalent for cells 8, 13, 17, while
the background appears noisier as the scatterer’s depth increases.

In a second set of simulations, we considered an idealized lossy
dielectric scatterer (e, = 1.0 and ¢ = 10.0) of the same dimensions
as those of the previous lossless scatterer. The results of the recon-
struction of the electric conductivity are presented in Fig. 4. The plot
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Fig. 4. Percentage errors on the reconstruction of the electric conductivity of
the scatterering object (scatterer: €, = 1.0 and ¢ = 10.0; region 2; €2 = 5.0
and o2 = 0.0; number of incidences: I = 1,6; = 0.0 (rad); S/N = o).
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Fig. 5. Percentage errors on the dielectric reconstructions (scatterer:
er = 10.0 and ¢ = 0.0: region 2: €9 = 5.0 and o2 = 0.2: number of
incidences: I = 1,61 = 0.0 (rad); S/N = o0).

shows a certain increase in the reconstruction error as the scatterer’s
depth increases; for instance, the error increases by about 35 percent
for cell 22. By contrast, it is very small for cell 1.

Then, the same scattering object as considered in the first simu-
lations (¢, = 10.0 and ¢ = 0.0) was placed in a lossy medium
(region 2) characterized by e = 5.0 and oo = 0.2. Fig. 5 gives
the results of the dielectric reconstructions. One can notice that both
the equivalent current density and the dielectric permittivity of the
object were reconstructed quite well (as in the case of the lossless
medium), while the background cells were reconstructed far betier
than shown in Fig. 4. This is to be ascribed to the fact that, in
these noiseless simulations, attenuations due to losses in region 2
did not significantly affect the input data from a computational point
of view. On the contrary, a different incident-field value (both in
amplitude-—due to losses—and in phase) for each cell allows us to
obtain more informative scattering data at the measurement points.
It will be shown that this improvement does not occur in the case
of noisy input data.

To evaluate noise effects, a random array made up of two indepen-
dent sequences of Gaussian noise (zero mean) was added to the same
input data, in order to obtain different values of the signal-to-noise
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Fig. 6. Percentage errors on the dielectric reconstruction of a scattering
object contained in the 8th cell (scatterer: €, = 10.0 and ¢ = 0.0: region

2: €p2 = 5.0 and o2 = 0.2; number of incidences: I = 1,8; = 0.0 (rad):
S/N = 10, 20, 40, 60, 80 dB.

ratio, S/N. This ratio can be defined as:

_ (el ]12
S/N =10 log TR

where N indicates the random array. As an example, Fig. 6 shows
the reconstruction errors versus different values of the signal-to-
noise ratio (10-80 dB) for cell 8. We assumed the same scatterer
(¢, = 10.0 and o = 0.0) and the same lossy medium (e, = 5.0 and
g2 = 0.2). The data on the equivalent current density are affected
by percentage errors greater than 40 percent, for S/N < 60 dB.
Nevertheless, the reconstruction of the dielectric permittivity can be
considered acceptable (percentage errors smaller than 50 percent).
Instead, notable errors affect the data on the background cells for the
lowest values of the S/N ratio.

A certain improvement was obtained through a multi-incidence
process. Since the Green matrix is independent of the incident electric
field, one can use more than one illumination, and then average the
obtained values, without significantly increasing the computational
load (as the pseudoinverse matrix is computed off line and once
for all). We considered 5 incident uniform plane waves, propagating
with angles §; = 0,0.25,0.5,0.75.1 (rad). The scatterer (¢, = 10.0
and ¢ = 0.0) was located in the 17th cell, and the propagation
medium was characterized by €2 = 5.0 and 0, = 0.2. Fig. 7
gives the values of the reconstructed dielectric permittivity of the
scattering object in the whole investigation domain (for S/N = 20
dB): the plot (@) refers to the single-incidence process, and the plot
(b) refers to the S5-incidence process. Only a slight improvement
in the reconstruction of the dielectric permittivity of the scatteter
was obtained in this case (about 6.6 for 5 incidences vs. 6.2 for
1 incidence). However, in general, no advantages of the multi-
incidence process can be noticed in the results of the scatterer
reconstruction. Nevertheless, this technique allows one to obtain more
regular background reconstructions. These results are better pointed
out in Table I, which gives the mean errors on the reconstructions
of the dielectric permittivities inside the empty cells, together with
the largest error, which is related to the worst-reconstructed cell, for
S/N ranging between 20 and 80 dB. It should be noted that a further
improvement might result from considering at least the symmetrical
incidence angles (§; = —0.25,—0.5.—0.75, —1.0 (rad)). Finally,
Table 1I gives, for completeness, the partial results of each single-
incidence solution, obtained for each illumination angle (#; =
0.0,0.25.0.5,0.75,1.0 (rad)) and for the same values of the S/N

(12)
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TABLE 1
VALUES OF THE RECONSTRUCTED RELATIVE DIELECTRIC PERMITTIVITY FOR [ = 1.6 = 0 0 (rad) anp I = 5,67 = 0,0,0.25,0.5,0.75,1.0
(rad). SCATTERER: €, = 10.0 AND ¢ = 0.0; REGION 2: €,9 = 5.0 AND 02 = 0 2; S/N = 20. 40, 60, 80 dB

Signal-to-noise ratio Number of max, e (k) - e#o(k)| | Nerzx e (k) -  “o(k)|
incidences k ‘

S/N=80dB P=1 0.7 0.2
P=5 0.5 0.12

S/N = 60dB P=1 1.2 0.21
P=5 0.4 0.11

S/N =40dB P=1 1.2 0.25
P=5 0.7 0.13

SIN=20dB P=1 0.5 0.16

' P=5 0.6 0.11

TABLE II reduction in the reconstructed background noise, with no increase

'VALUES OF THE RECONSTRUCTED RELATIVE DIELECTRIC PERMITTIVITY FOR
I=1.68;, =0.0.6;y =0.25,8; =0.5.6; = 0.75.6; = 10 (PARTIAL
ResuLTs OF EACH SINGLE -INCIDENCE PROCESS). SCATTERER: €, = 10.0 AND
o = 0.0; REGION 2: €,2 = 5.0 AND 02 = 0.2: S/N = 20, 40. 60, 80 dB

SIN=60d8 | S/N-60dB | §/N-40dB | SN-=200B
8-00rd 0.266 0293 0140 0381
0 -025rad 0.278 0287 0350 0376
6-05rad 0.291 0291 0zn 0275
8-075rad 0.29 0295 0314 029%
0-10rad 0298 0302 0309 0.410
80

reconstructed €,

@ 1234567 8910111213141516.17.1819.20.21.22.23.24.25
cell number

Fig. 7. Reconstructed relative dielectric permittivity in the investigation do-

main. Number of incidences: (continuous line) I = 1. 681 = 0.0 (rad): (dashed

lne} I = 5,67 = 0,0,0.25,0.5.0.75. 1.0 (rad). (scatterer: ¢, = 10 0 and

o = 0.0; region 2: ¢,2 = 5.0 and o9 = 0.2; S/N = 20 dB).

ratio. As expected, the reconstruction quality is entirely independent
of the illumination angle, due to the infinite wavefront of the incident
plane wave used as an interrogating wave.

IV. ConNcLUsIONS

An approach to microwave imaging of two-dimensional infinite
dielectric cylinders buried in a half-space configuration has been
proposed. The approach is based on an integral formulation of
e.m. scattering in terms of the Green function for two half-space
(seminfinite) homogeneous dielectric media interfaced by a plane.
The MoM and a pseudoinversion algorithm are used in the numerical
scheme. A multi-incidence process makes it possible to obtain a

in the required computational resources, thanks to the invariance of
the Green matrix to the incidence angle.

Numerical results show that dielectric reconstructions are feasible,
even though errors are to be expected, especially for lower values of
the signal-to-noise ratio and for deeper objects.
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Calculating Input Impedance of Electrically Small
Insulated Antennas for Microwave Hyperthermia

Piotr S. Debicki and Melvin A. Astrahan

Abstract— Two analytical methods for approximating the input
impedance of insulated monopole or dipole antennas embedded within
an electrically dense medium have been reported in the literature. The
methods differ by the applied degree of approximation in the solution
of the integral equation for the current in the insulated conductor.
These methods directly affect the calculation of the wavenumber and
the characteristic impedance of an antenna treated as a lossy coaxial
line. In the more complex approach the resulting formulas contain
an additional term which improves the correlation with measured and
numerically modeled results for electrically longer antennas. When
applied to electrically small antennas (ie. < 1/8 wavelength in the
medium), this term introduces a significant error into the calculation of
the real part of the complex input impedance. Special care must be taken
if these formulas are used to design multisectional antennas in order to
avoid impedance mismatch. Two methods for correcting this error are
presented.

I. INTRODUCTION

Insulated dipole and monopole antennas embedded in a dissipative
dielectric medium may be found in many technical areas including
communications, physical measurements, geophysical exploration
and localized heating. An important medical application of localized
heating is hyperthermic therapy of cancer and certain benign diseases
[2]-51, [9] where insulated antennas are often used as interstitial and
intracavitary hyperthermia applicators.

Two analytical approximations which describe the current distri-
bution and input impedance of these antennas have been developed
by King er al. [6]-{8]. We will refer to these approximations as the
insulated antenna theory (IAT). According to the IAT, the insulated
antenna embedded in a lossy dielectrtic is treated as a lossy transmis-
sion line terminated with an ideal open end which assumes infinite
terminating impedance. The transmission parameters of the line are
derived from approximate solutions of the integral equation for the
current along the antenna.

The methods differ bya the applied degree of approximation in
the solution of the integral equation for the current in the insulated
conductor and also differ slightly in assumptions. These results
directly affect calculation of the wavenumber of the current and
the characteristic impedance of an antenna treated as a lossy coaxial
line. The simpler approximation [7], although appropriate for elec-
trically smaller antennas (h < 1/4 wavelength in the surrounding
medium—A2\js) leads to significant error as h becomes longer. The
more complex (MC) approach [7] contains an additional term which
improves the correlation with measured and numerically modeled
results for electrically longer antennas. When applied to electrically
small antennas (i.e. < 1/8Ans), this additional term introduces a
significant error into the calculation of the real part of the complex
input impedance.

Iskander and Tumeh [3] have proposed an iterative approach
to designing multisectional antennas based on the MC method of
approximating the current distribution. If their approach is used
to develop devices (such as hyperthermia applicators) containing
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Fig. 1. Insulated antenna embedded in an electrically dense medium. Uni-
form monopole (at top). Sectorial antenna in the form used in Table I (at
bottom).

multisectional antennas special care must be taken to avoid impedance
matching error.

II. METHODS

The IAT was used to compare the two approximation methods for
electrically small antennas. Consider the case of a monopole antenna
with lossless insulation and time dependence e’“*. The insulated
monopole (Fig. 1(a) consists of a perfect central conductor of length
h and outer diameter (OD) 2¢. This is surrounded by an insulating
layer with OD = 2c. The monopole is assumed to be ideally open
ended. The insulation may consist of one or two layers. However,
for simplicity, only a single layer will be considered. Outside the
insulation there is an infinite ambient medium. The wavenumber of
the insulating layer is ks = w(poe2)'/? and the wavenumber of the
ambient medium is ks = B — joa = w(poéa) /2.

The assumptions of the IAT are that the cross section of the antenna
is electrically small ((kzc)? < 1) and that the electric density (|.|)
of the ambient medium is higher than that of the insulation. In the
MC case |kq/kz|> > 2 and in the less complex (LC) approximation
{ka/ka]* > 16.

The input impedance of the monopole antenna can be calculated
from the complex wavenumber (k) and the complex characteristic
impedance Z. of the line:

Zm = _.]ZC/ t"a‘n(kLh) (1)

In the case of LC approximation of the current distribution:
kL = k2[1 + F/In(c/a)]*/? @
Z.=krn(c/a)/(2rwes) 3)

where F' = H(§2)(k4c) JlkscH ;2)(k4c)]. The MC approach yields:

kr = ke[l + F/ In(c/a)]'/*[1 + (F(kz/k4)2/ln(c/a))]_1/2 4)
Z. =kpln(c/a)/(2nwer) + kLF(kz/k4)2/(27rw52) (5)
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